Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications
نویسندگان
چکیده
Since the introduction of the cosmic-ray neutron method for soil moisture estimation, numerous studies have been conducted to test and advance the accuracy of the method. Almost 200 stationary neutron detector systems have been installed worldwide, and roving systems have also started to gain ground. The intensity of low-energy neutrons produced by cosmic rays, measured above the ground surface, is sensitive to soil moisture in the upper decimeters of the ground within a radius of hectometers. The method has been proven suitable for estimating soil moisture for a wide range of land covers and soil types and has been used for hydrological modeling, data assimilation, and calibration and validation of satellite products. The method is challenged by the effect on neutron intensity of other hydrogen pools such as vegetation, canopy interception, and snow. Identifying the signal of the different pools can be used to improve the cosmic-ray neutron soil moisture method as well as extend the application to, e.g., biomass and canopy interception surveying. More fundamental research is required for advancement of the method to include more energy ranges and consider multiple height levels.
منابع مشابه
The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System
The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray p...
متن کاملThe COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the c...
متن کاملEffect of Atmospheric Water Vapor on Neutron Count in the Cosmic-ray Soil Moisture Observing System. Journal of Hydrometeorology
The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray p...
متن کاملThe COsmic-ray Soil Moisture Interaction Code (COSMIC)
This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available. Abstract Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron in...
متن کاملAn assessment of the effect of horizontal soil moisture heterogeneity on the areaaverage measurement of cosmicray neutrons
[1] The cosmic-ray neutron probe measures soil moisture over tens of hectares, thus averaging spatially variable soil moisture fields. A previous paper described how variable soil moisture profiles affect the integrated cosmic-ray neutron signal from which depthaverage soil moisture is computed. Here, we investigate the effect of horizontal heterogeneity on the relationship between neutron coun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017